
Autoconfiguration in
OpenLCB

The Problem:

• At the present, there are minimal supports for
Modular Layouts.

• Eg: Ntrak, oNeTrak, BendTrak, Freemon, and
Freemo ...

Usually meets are made up of large and small club
layouts, with some individual modules added.

Setup is a lengthy process!

... most groups do not implement signaling

... or if they do it is via a specialized bus that
forwards aspect indications between modules.

But if we can help with set-up and signals, then
more groups will want to implement them.
Chicken and Egg Problem.

Adding a Local Control Bus can help

... but if each module has at least one node

... and each node has multiple events

... How do we connect them?

Also, the bus has a limit to how many nodes it can
handle

... and there will be a lot of traffic.

What can we do to help?

Fortunately OpenLCB already has some help with
these ...

• Very large ID and Event spaces ...
... and they are unique ...

so no collisions!

• Multiple segments

... with a high speed backbone bus

• Routable messages ...

... messages are only sent to the

 segments that need them.

Some things help reduce the problem:
Most messages have a limited area of influence
 ... and its usually limited to

Backbone bus

Local bus

Except for:
 ... global messages (Emergency Stop, Power-on, etc)
 ... configuration messages
 ... debugging
(and these can be handled by smarter Gateways that can drill
down to lower levels, and I won't cover that here).

 ... the module (local turnout control, animation, etc)
 ... or the club's layout (signaling, local control panel, etc.)

These events will need to taught to the nodes responsible.
 ... this can be done in a number of ways:
 Manually
... but it is a big job
However, a group of Club modules can be considered as a
large conglomerate-module, and help reduce the problem,
because the internal events are be predefined.
 Or, automatically, as follows.

The exceptions to the above are called edge events, ie those that
cross the edge or boundary of a module or group of modules.

 Auto-configuration:

There are at least two methods:
 (1) Using XML to describe the module or module-groups
 ... with software to help the manual configuration.
... likely the XML files would be supplied by each
individual and group.

 (2) Auto-Configuration using the Bus

OpenLCB would like to enable different solutions, some of
dependent and some independent of large central processor.

Two possible methods are:
1. Add a wire
between modules

 ... and use some protocol for the two modules to talk to each
other.

 ... It could be as simple as pulling the link low and transmitting
the module ID.
2. Or, let the trains discover the layout topology, which I think is
much more fun!

We need to find a way for modules to discover
their neighbours.

I have been playing with the latter.

How it works:
Each modular group develops its own Protocol using
events: [source node, event#].
By using a preassigned block of Events.
For example: BendTrak might be assigned
 the block: ABCDEFABCDEFxxyy,
... where the bottom two bytes determine specific
meaning.

The organization then publishes the protocol, and its
members use it to allow automatic configuration.

Lets define an example protocol.

For BendTrak, each module has two ends and two
tracks ... lets call them connections and label them A, B,
C, D

And lets define some messages:

(1) ABCDEFABCDEF0101
 – the last block at A is unoccupied
(2) ABCDEFABCDEF0201
 – the last block at B is unoccupied
 etc ...
(8) ABCDEFABCDEF0102
 – the last block at A is occupied
 ...

... several messages are sent:
(1) When A on 0017 is occupied [0017, ABCDEFABCDEF0101]
(2) When B on 0254 is occupied [0254, ABCDEFABCDEF0201]
(3) When A on 0017 is unoccupied [0017, ABCDEFABCDEF0102]
(4) When B on 0254 is unoccupied [0254, ABCDEFABCDEF0202]

The nodes on each module can easily recognize these
 ... by the ABCDEFABCDEF prefix
 ... and since their connector is/was just occupied or unoccupied
 ... they can determine the identity of their neighbour from
 its source node id in the message (0017 or 0254, respectively).
So,
 Node 0017 knows that 0254B is its neighbour at its connection-A
 Node 0254 knows that 0017A is its neighbour at its connection B

Now, when a train crosses from on module to another, shown below

We can then further define some more protocol to
allow automated signaling

... by having a signal associated with each
connector

... and defining more events for these, say:

 ABCDEFABCDEFcc10 – signal cc is DARK
 ABCDEFABCDEFcc11 – signal cc is STOP
 ABCDEFABCDEFcc12 – signal cc is CAUTION
 ABCDEFABCDEFcc13 – signal cc is PROCEED

This allows each connector to automatically respond to
it distant signal on the next module.

I had originally hoped to show some physical
modules which can be assembled in an ad hoc
manner

 ... and then run a train across them to auto-configure
their signals.

Unfortunately, the modules are only half finished :-(

However, the good news is that I had made a mock-up /
simulation

with a language called Processing
 ... and I can demo that for you:

