
OpenLCB Technical Note

Simple Node Information
Protocol

Feb 6, 2016 Adopted

 1 Introduction
One of the important innovations of OpenLCB compared to other layout control systems is the
ability for end-users to centrally browse, manage and configure nodes connected to the
OpenLCB network. This management and configuration is usually achieved by a computer
software with a Graphical User Interface, such as JMRI.

These user interfaces need three major features: node discovery, node presentation in a user-
friendly way (in other words read access), and node configuration (in other words write access).

The protocols defined for these purposes have to be simple enough for all nodes to implement,
and robust and scalable enough to work from the smallest networks to the largest layouts or
module meets.

The Simple Node Information Protocol is a light-weight and scalable protocol designed for the
middle use-case: to allow a network browser tool to read a small set of node identification
information (such as the manufacturer and model, as well as user-specified name and
description) efficiently. This information can then be used to present the node in a UI and allow
the user to recognize the node in a possibly long list or table of nodes, and to select it as a target
for possible interactions.

OpenLCB provides a very versatile protocol standard for communicating between nodes, which
allows very generic transfers to take place between nodes, including accessing read-only or read-
write memory areas of the target node, for example via the Memory Configuration Protocol. This
protocol can be parametrized to transmit the same information as the Simple Node Information
Protocol.

The Simple Node Information Protocol on the other hand has been designed with simplicity and
efficiency in mind. It is able to provide only a fixed and very small set of information. This
makes it easy to supply data to fixed UI elements, or even to very limited UI (e.g. a single-line
alphanumeric display as it could be found on a throttle). Also the implementation state flows are
very simple, and allow this protocol to be implemented on the smallest (and cheapest) nodes with
very minimal engineering effort. This is an important consideration, because manufacturers are
naturally interested in driving the costs down, but the implementation should still support the
node browsing use-cases. Another important consideration is efficiency: how much network
traffic is required to retrieve basic information per node. This becomes important for very large
networks, where the mere enumeration of the available nodes could lead to network congestion.

Larger nodes are therefore encouraged to still implement this protocol to allow better handling of
the entire network by network management tools.

Copyright 2012--2016 All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 1 of 5 - Feb 6, 2016

5

10

15

20

25

30

http://openlcb.org/Licensing.html

OpenLCB Simple Node Information Protocol Technical Note

For a Node to implement the Simple Node Information Protocol (as a target node), the following needs
to be done:

• In the Protocol Support Reply message, indicate the availability of the Simple Node
Information Protocol (SNIP) protocol.

• Listen for incoming Simple Node Information Requests.
• Reply to each of these requests by sending back one or more addressed messages to the source

Node, containing the fixed payload. Ensure the framing bits are appropriately set when using
CAN.

• When a write operation (via any Protocol) changes the user-specified information, reset the
node or transition to Uninitialized state, and transition back to Initialized state by sending Node
Initialization Complete message.

 2 Annotations to the Standard
 2.1 Introduction

Note that this section of the Standard is informative, not normative.

 2.2 Intended Use

Note that this section of the Standard is informative, not normative.

 2.3 Reference and Context

The OpenLCB Message Network Standard defines the CAN frame encoding of addressed OpenLCB
messages. The reply generated by the Simple Node Information Protocol is an addressed message, and
thus is governed by this formatting requirement. While CAN-bus messages can only transmit 8 bytes of
data at a time, the response payload to send can be up to 253 bytes long. This requires the use of
multiple CAN frames. The OpenLCB Message Network Standard defines two bits in the first data byte
which allows sending multiple frames that constitute a single addressed message.

The Protocol Support Inquiry and Protocol Support Reply messages allow a node (for example the
network browser node) to check what protocols a particular destination node supports. If a node
implements the Simple Node Information Protocol, the network browser will know from the Protocol
Support Reply.

The OpenLCB protocol stack provides a number of methods, some very flexible, to exchange data
between participating nodes. One of these methods is laid out to represent the same information as
provided by the Simple Node Information Protocol, albeit in a more general way. The OpenLCB
Datagram Transport Protocol can be used to send medium-sized messages between nodes, the
OpenLCB Memory Configuration Protocol can be used on top of this to provide read-only or read-
write access to blocks of memory in the target node. The exported blocks are organized as so-called
Memory Spaces, and two of these spaces are reserved to provide the same information as the Simple
Node Information Protocol. The space 0xFC gives access to the read-only manufacturer-specific data,
while the space 0xFB gives access to the read-write user-modifiable data. These two data blocks
together give the information returned by the Simple Node Information Protocol. The format is
described in the OpenLCB Configuration Description Information Standard.

Copyright 2012--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 2 of 5 - Feb 6, 2016

35

40

45

50

55

60

65

70

http://openlcb.org/Licensing.html

OpenLCB Simple Node Information Protocol Technical Note

For a Node to implement the alternative retrieval method for this information, the following steps have
to be made:

• In the Protocol Support Reply, indicate the availability of the Abbreviated Configuration
Definition Information (ACDI) protocol.

• Implement the OpenLCB Datagram Transport Protocol and the OpenLCB Memory Access
Configuration Protocol.

• Implement a read-only memory space 0xFC and export the manufacturer-specific identification
information in a fixed format.

• Implement a read-write memory space 0xFB and export the user-specific identification
information in a fixed format.

• If the Configuration Definition Information (CDI) memory space is implemented, then add the
<acdi … /> tag to the XML description of the node configuration.

For details, see the above quoted standards.

 2.4 Message Format

This section of the Standard is normative, and describes the OpenLCB messages in a generic form
(transport-agnostic). For examples of how these messages would look on CAN, see Section 2.7.

 2.5 Payload Format

 2.5.1 Format
The total size of the reply can be up to 253 bytes. A typical reply will be much shorter, because only the
actual length of the strings have to be transported as opposed to the maximum length (like for example
in the case of the Memory Configuration Protocol).

 2.5.2 Versioning
The first version of this standard used the version identifiers 0x01 and 0x01 in the two sections,
respectively. In order to allow future extensions of the data transmitted, we must ensure that nodes
parsing the response according to the current version of the standard will be able to understand a
response generated by a Node according to a future version of the Standard.

The solution is that the version identifier byte will double as a count of the null-terminated strings in
the particular data segment, hence the current standard defines 0x04 and 0x02 as valid version
numbers. Thus a receiving node can count the number of zero bytes in the received message to find the
separator between the sections and identify the known fields.

 2.6 Interactions

When a node gets a Simple Node Information Request, if possible it shall reply with one or more
Simple Node Information Reply messages containing the node's information. If it's not able to process
the request, (for example because it is already servicing another request), it shall send an Optional
Interaction Rejected with an appropriate error code. It's recommended that the rejection message have
the temporary-error bit set, so that the node sending the original request will retry it. The suggested

Copyright 2012--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 3 of 5 - Feb 6, 2016

75

80

85

90

95

100

105

http://openlcb.org/Licensing.html

OpenLCB Simple Node Information Protocol Technical Note

error code is 0x2020, Buffer unavailable. See the OpenLCB Message Network Standard for the
Optional Interaction Rejected message and for the error code format.

The first version of this Standard predates the ability to send long addressed messages over CAN-bus.
There are Nodes produced which will send the reply in as many messages as the number of CAN
frames necessary to cover the length, without using the framing bits. Therefore network browsers using
the Simple Node Information Protocol must be prepared to receive the response in multiple messages.
If there is no framing bits to signal the end of transmission, the receiving node may count the zero bytes
to realize when the response transmission is finished.

While the Simple Node Information Protocol is a lightweight protocol, enumerating a large set of nodes
will still put a considerable traffic onto the bus. Therefore it is strongly recommended for network
browser nodes to cache the returned information in their memory to avoid unnecessary traffic in
repeatedly requesting it. The Standard specifies that this cache must be invalidated when the Node
Initialization Complete message is received from a particular node, and conversely, if the Node's
information payload changes, it must re-enter Initialized state to notify any other node that may have
cached the information to refresh it.

 2.7 CAN Adaptation

For reference, we describe the messages defined in this standard as formatted for the CAN transport
protocol. This section is not normative; should there be a conflict between this document and the
Standards, then the Standards take precedence.

Name CAN header Data Content

Simple Node Information Request 0x19DE,8sss fddd

Where 'sss' is the 12-bit CAN Alias of the source Node (the node sending the request), 'ddd' is the 12-
bit CAN Alias of the target Node (being queried), and 'f' is typically 0.

Name CAN header Data Content

Simple Node Information Reply 0x19A0,8sss fddd, up to 6 payload bytes

Where 'sss' is the 12-bit CAN Alias of the target Node (sending the reply), 'ddd' is the 12-bit CAN Alias
of the source Node (the one that has sent the query), and 'f' is as follows:

• f = 0x0 for replies that fit into a single CAN frame

• f = 0x1 for the first frame of a reply with more than one frame

• f = 0x2 for the last frame of a reply with more than one frame

• f = 0x3 for each middle frames of a reply with more than two frames

Copyright 2012--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 4 of 5 - Feb 6, 2016

110

115

120

125

130

135

5

http://openlcb.org/Licensing.html

OpenLCB Simple Node Information Protocol Technical Note

Table of Contents
 1 Introduction.. 1
 2 Annotations to the Standard... 2
 2.1 Introduction... 2
 2.2 Intended Use... 2
 2.3 Reference and Context.. 2
 2.4 Message Format.. 3
 2.5 Payload Format... 3

 2.5.1 Format...3

 2.5.2 Versioning... 3

 2.6 Interactions..3
 2.7 CAN Adaptation..4

Copyright 2012--2016. All rights reserved. See http://openlcb.org/Licensing.html for license terms. Page 5 of 5 - Feb 6, 2016

http://openlcb.org/Licensing.html

	1 Introduction
	2 Annotations to the Standard
	2.1 Introduction
	2.2 Intended Use
	2.3 Reference and Context
	2.4 Message Format
	2.5 Payload Format
	2.5.1 Format
	2.5.2 Versioning

	2.6 Interactions
	2.7 CAN Adaptation

